Interfacial Charge Transfer Bridge Prolongs Carrier Recombination Lifetimes of CoFe Metal‐Thiolate Framework/Hematite Photoanode for Water Oxidation

Author:

Yang Tao1,Chen Zong‐Wei2,Yue Xin‐Zheng3,Liu Qing‐Chao3,Yi Sha‐Sha1ORCID,Zhu Yong‐Fa4

Affiliation:

1. School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China

2. Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450052 P.R. China

3. College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China

4. Department of Chemistry Tsinghua University Beijing 100084 P. R. China

Abstract

AbstractConstructing heterostructural photoanodes is attractive for elevating the photoelectrochemical (PEC) performance, however, it is a long‐standing challenge to achieve highly efficient interfacial charge transfer. Herein, a CoFe metal‐thiolate framework (CoFe MTF)/Fe2O3 photoanode connected by an interfacial Fe─O─N/S bond is designed to modulate the behavior of charge carriers and improve water oxidation performance. It is disclosed that this interfacial bond functions as a direct charge transfer bridge between shallow trap states of Fe2O3 and CoFe MTF, leading to prolonged carrier recombination lifetimes (85 ns for CoFe MTF/Fe2O3 compared to 37 ns for Fe2O3) and enhanced charge transfer efficiency. Alternatively, a robust interfacial electric field is established in the CoFe MTF/Fe2O3 p–n heterojunction, facilitating efficient charge transfer. As expected, the CoFe MTF/Fe2O3 photoanode exhibits significant enhancement in water oxidation, resulting in a three‐fold increase in photocurrent density compared to pristine Fe2O3. This study highlights the significance of designing interfacially bonded heterostructural photoelectrodes to regulate the transfer characters of charge carriers.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3