High Ionic Conductive, Mechanical Robust Sulfide Solid Electrolyte Films and Interface Design for All‐Solid‐State Lithium Metal Batteries

Author:

Li Dabing1,Liu Hong2,Wang Chao1,Yan Chong3,Zhang Qiang4,Nan Ce‐Wen2,Fan Li‐Zhen1ORCID

Affiliation:

1. Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Advanced Energy Materials and Technologies University of Science and Technology Beijing Beijing 100083 China

2. State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China

3. Shanxi Research Institute for Clean Energy Tsinghua University Taiyuan 030032 China

4. Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing Beijing 100084 China

Abstract

AbstractAll‐solid‐state lithium batteries (ASSLBs) are considered a promising technology for next‐generation energy storage systems due to their inherent safety. However, the conventional laboratory‐scale ASSLBs reported to date are based on pellet‐type structures with thick solid electrolyte layers, leading to challenges related to low energy densities and poor electrochemical performance. In this study, porous adhesive poly(ethylene vinyl acetate) (PEVA) scaffolds and polytetrafluoroethylene (PTFE) binders are utilized to interweave sulfide solid electrolytes into freestanding films with an ultra‐low thickness of 40 µm, high ionic conductivity of 1.1 mS cm−1, and a high tensile strength of 74 MPa. To mitigate the reduction reaction between the PTFE binder and the lithium metal anode, a Li3N‐rich solid electrolyte interphase (SEI) in situ on lithium metal is formed, and the assembled symmetric cell shows excellent cycling stability within 800 h at the current density of 0.2 mA cm−2 and room temperature. Additionally, the ASSLBs using oxidatively stable Li2ZrCl5F in the composite cathode and the prepared solid electrolyte film demonstrate exceptional cycling performance and fast‐charging capability, with a high cell‐level energy density of 354.4 Wh kg−1. The ASSLBs prepared by coupling E‐LPSCl film and stable interface design exhibit excellent electrochemical performance and a high cell‐level energy density.

Funder

National Key Research and Development Program of China

Shanxi Provincial Key Research and Development Project

Natural Science Foundation of Beijing Municipality

Fundamental Research Funds for the Central Universities

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Wiley

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3