Affiliation:
1. Department of General Surgery The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325000 China
2. State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
Abstract
AbstractHigh‐performance theranostic systems are of paramount importance for achieving precise image‐guided cancer immunotherapy. Here, a novel nanoplatform is presented that integrates aggregation‐induced emission luminogen (AIEgen) with prussian blue (PB) nanocatalyzer for robust cancer immunotherapy. The AIEgen with dimethylamine substitution demonstrates compelling near‐infrared (NIR) light‐induced photothermal conversion and photodynamic therapy (PDT) capabilities. By incorporating AIEgen into porous PBNPs, and further enveloped within M1 macrophage membrane, a tumor‐specific theranostic nanoagent is constructed. This strategic integration effectively constrains the molecular motion of AIEgen, leading to amplified NIR‐II fluorescence brightness and PDT attributes. Moreover, PBNPs can catalyze tumor‐overexpressed H2O2 to generate oxygen to boost PDT efficacy, and PB's NIR absorption also intensifies photoacoustic imaging and photothermal effect. The integration of NIR‐II fluorescence and photoacoustic imaging provides comprehensive information for photoimmunotherapy in orthotopic breast cancer‐bearing mice. Leveraging its potent immunogenic cell death effect, the nanoagent not only significantly inhibits cancer growth, but also generates a whole‐cell therapeutic cancer vaccine to protect mice from tumor rechallenge. In highly malignant post‐surgery breast cancer models, the nanoagent enables both accurate identification of residual tumors and efficient inhibition of postoperative tumor recurrence and pulmonary metastasis. This study will offer valuable insights for creating highly efficacious and multifaceted photoimmunotherapy protocols.
Funder
National Natural Science Foundation of China
Key Research and Development Program of Zhejiang Province
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献