S‐Scheme g‐C3N4/CdS Heterostructures Grafting Single Pd Atoms for Ultrafast Charge Transport and Efficient Visible‐Light‐Driven H2 Evolution

Author:

Li Rongjie12ORCID,Li Huaxing12ORCID,Zhang Xidong3ORCID,Liu Bowen4,Wu Binglan5,Zhu Bicheng3,Yu Jiaguo3,Liu Gang12ORCID,Zheng Lirong6,Zeng Qingdao1ORCID

Affiliation:

1. CAS Key Laboratory of Standardization and Measurement for Nanotechnology National Center for Nanoscience and Technology Beijing 100190 P. R. China

2. University of Chinese Academy of Sciences Beijing 100049 P. R. China

3. Laboratory of Solar Fuel Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 P. R. China

4. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China

5. CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 P. R. China

6. Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractEmerging step‐scheme (S‐scheme) heterostructures hold unique superiority in steering directional charge transport and reinforcing redox capacity, yet rational modification of S‐scheme heterostructures by single atoms (SAs) for efficient photocatalytic H2 evolution is rarely reported. In this work, Pd SAs‐modulated organic–inorganic g‐C3N4/CdS S‐scheme heterostructures are designed and prepared by a one‐pot mechanochemical approach allowing for g‐C3N4 nanosheets/CdS nanoparticles to confine atomically dispersed Pd co‐catalysts. The g‐C3N4/CdS S‐scheme charge‐transfer pathway is corroborated by a combination of in situ irradiated X‐ray photoelectron spectroscopy, electron paramagnetic resonance, and Kelvin probe force microscopy. Density functional theory (DFT) calculations, high‐angle annular dark‐field scanning transmission electron microscopy, and X‐ray absorption fine structure identify Pd‐S3 and Pd‐N2 atomic moieties underpinned by the electronic interaction between Pd SAs and g‐C3N4/CdS heterostructures, in which the d‐band center of Pd SAs is optimized for proton adsorption thermodynamically. Further, the g‐C3N4/CdS S‐scheme heterostructures alongside Pd SAs in concert boost the rapid migration of photogenerated electrons (1.05 ps) via Pd─S and Pd─N bond‐derived channels. A maximal H2 evolution rate of 85.66 mmol h−1 g−1 is achieved by 1 wt% Pd‐20 wt% g‐C3N4/CdS hierarchical composites. This work may guide the design of high‐efficiency S‐scheme‐based photocatalysts for solar‐to‐H2 conversion and beyond.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3