Phosphor‐Loaded Triboelectric Film‐Based Multipurpose Triboelectric Nanogenerators for Highly‐Efficient Energy Harvesting, Sensing, and Self‐Illumination Applications

Author:

Paranjape Mandar Vasant1,Lee Jun Kyu1,Manchi Punnarao1,Graham Sontyana Adonijah1,Kurakula Anand1,Kavarthapu Venkata Siva1,Yu Jae Su1ORCID

Affiliation:

1. Department of Electronics and Information Convergence Engineering Institute for Wearable Convergence Electronics Kyung Hee University 1732 Deogyeong‐daero, Giheung‐gu Yongin‐si Gyeonggi‐do 17104 Republic of Korea

Abstract

AbstractA novel approach is proposed for combining phosphor materials with triboelectric nanogenerators (TENGs) for mechanical energy harvesting and illumination applications. For this purpose, strongly reddish‐orange‐emitting Ba0.5Sr0.5Nb2O6:0.25 mol Eu3+ (BSNb:0.25Eu) phosphor materials are synthesized. The photoluminescence properties of the synthesized BSNb:0.25Eu are analyzed. The synthesized BSNb:0.25Eu is utilized as a dielectric filler inside a polydimethylsiloxane polymeric film due to its high dielectric properties to improve the overall dielectric properties of the composite film (CF). TENG devices are fabricated using phosphor‐loaded CFs as the tribonegative layer, transparent polyvinyl alcohol as the tribopositive layer, and aluminum as the conductive electrode. All the TENGs operate in a contact‐separation mode, and the highest electrical output is attained by optimizing the phosphor filler concentration in the CF. The optimized TENG exhibits excellent stability in long‐term operational tests, under varying harsh ambient temperatures. Indium tin oxide sputtered on both triboelectric films as an electrode and combined with a transparent hard substrate to obtain a fully transparent TENG. A self‐illuminating TENG (SI‐TENG) is fabricated by integrating near‐ultraviolet light‐emitting diodes between two identical TENGs. The SI‐TENG can harvest the mechanical energy available in the surrounding environment and illuminate it as a light source. Additionally, the proposed phosphor‐loaded polymer films can be employed for optical thermometry and mechanical energy harvesting via SI‐TENG on a large scale.

Funder

National Research Foundation of Korea

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3