Dimensionality Engineering toward Carbon Materials for Electrochemical CO2 Reduction: Progress and Prospect

Author:

Du Yadong1,Meng Xiangtong1ORCID,Ma Yangjun1,Qi Jun1,Xu Guangyao1,Zou Hongqi1,Qiu Jieshan1

Affiliation:

1. State Key Laboratory of Organic‐Inorganic Composites State Key Laboratory of Chemical Resource Engineering College of Chemical Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China

Abstract

AbstractCarbon materials are of great significance in state‐of‐the‐art electrochemical CO2 reduction (ECR) as key components such as electrocatalysts, gas diffusion electrodes, and current collectors. Notably, dimensionalities of carbons and related manipulations play vital roles in boosting ECR performance, e.g., mass/charge transfer dynamics, exposure of active sites, reaction space, product's Faradaic efficiency/selectivity, and durability. Here, recent endeavors in dimensionality engineering toward advanced carbon‐based materials for ECR is first summarized, including pure carbons (e.g., carbon nanotube and graphene) and carbon composites, and highlight the dimensionality‐dependent properties toward ECR performance. Various engineering strategies referring to dimensionality modulation and integration have been summarized, e.g., top‐down, bottom‐up, and soft chemical approaches. Design principles of dimensionality‐varied carbons are elaborated, the impacts of dimensionalities of carbons and related surface chemistry (e.g., functional group, wettability, and electronic structure) on ECR kinetics and product‐targeted mechanisms are also scrutinized. Some insights into how the dimensionality manipulation of carbons elevates performance of carbon‐based materials in mass/charge transfer acceleration, ECR kinetics, and product selectivity are provided. At last, a perspective for challenges and future development of dimensionality‐varied carbon materials is discussed. This review aims at providing guidance for customizable construction of carbon materials with dimensionality dependence toward green and energy‐saving electrosynthesis systems.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Shenzhen Science and Technology Innovation Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3