In‐Drop Thermal Cycling of Microcrystal Assembly for Senescence Control with Minimal Variation in Efficacy

Author:

Miller Ryan C.1ORCID,Lee Jonghwi2,Kim Young Jun3,Han Hee‐Sun45,Kong Hyunjoon156ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering University of Illinois at Urbana‐Champaign Urbana IL 61801 USA

2. Department of Chemical Engineering and Materials Science Chung‐Ang University Seoul 06974 South Korea

3. Environmental Safety Group Korea Institute of Science and Technology‐Europe 66123 Saarbrucken Germany

4. Department of Chemistry University of Illinois at Urbana‐Champaign Urbana IL 61801 USA

5. Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana IL 61801 USA

6. KU‐KIST Graduate School of Converging Science and Technology Korea University Seoul South Korea

Abstract

AbstractThe secretome from mesenchymal stem cells (MSCs) have recently gained attention for new therapeutics. However, clinical application requires in vitro cell manufacturing to attain enough cells. Unfortunately, this process often drives MSCs into a senescent state that drastically changes cellular secretion activities. Antioxidants are used to reverse and prevent the propagation of senescence; however, their activity is short‐lived. Polymer‐stabilized crystallization of antioxidants has been shown to improve bioactivity, but the broad crystal size distribution (CSD) significantly increases the efficacy variation. Efforts are made to crystalize drugs in microdroplets to narrow the CSD, but the fraction of drops containing at least one crystal can be as low as 20%. To this end, this study demonstrates that in‐drop thermal cycling of hyaluronic acid‐modified antioxidant crystals, named microcrystal assembly for senescence control (MASC), can drive the fraction of microdrops containing crystals to >86% while achieving significantly narrower CSDs (13 ± 3 µm) than in bulk (35 ± 11 µm). Therefore, this approach considerably improves the practicality of CSD‐control in drops. In addition to exhibiting uniform release, MASC made with antioxidizing N‐acetylcysteine extends the release time by 40%. MASC further improves the restoration of reactive oxygen species homeostasis in MSCs, thus minimizing cellular senescence and preserving desired secretion activities. It is proposed that MASC is broadly useful to controlling senescence of a wide array of therapeutic cells during biomanufacturing.

Funder

National Science Foundation

National Research Foundation

National Institutes of Health

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3