Affiliation:
1. State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 P. R. China
2. Institute of Nanochemistry and Nanobiology School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 P. R. China
3. Research Institute of Electrochemical Energy Department of Energy and Environment (RIECEN) National Institute of Advanced Industrial Science and Technology (AIST) 1–8–31 Midorigaoka Ikeda Osaka 563–8577 Japan
4. School of Materials Science and Engineering Nanjing Institute of Technology Nanjing Jiangsu 211167 P. R. China
5. Department of Industrial and Systems Engineering Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong P. R. China
Abstract
AbstractPotassium‐ion batteries have emerged not only as low‐cost alternatives to lithium‐ion batteries, but also as high‐voltage energy storage systems. However, their development is still encumbered by the scarcity of high‐performance electrode materials that can endure successive potassium‐ion uptake. Herein, a hydrated Bi‐Ti bimetallic ethylene glycol (H‐Bi‐Ti‐EG) compound is reported as a new high‐capacity and stable anode material for potassium storage. H‐Bi‐Ti‐EG possesses a long‐range disordered layered framework, which helps to facilitate electrolyte ingress into the entire Bi nanoparticles. A suite of spectroscopic analyses reveals the in situ formation Bi nanoparticles within the organic polymer matrix, which can alleviate stresses caused by the huge volume expansion/contraction during deep cycles, thereby maintaining the superior structural integrity of H‐Bi‐Ti‐EG organic anode. As expected, H‐Bi‐Ti‐EG anode exhibits a high capacity and superior long‐term cycling stability. Importantly for potassium storage, it can be cycled at current densities of 0.1, 0.5, 1, and 2 Ag−1 for 800, 700, 1000, and even 6000 cycles, retaining charging capacities of 361, 206, 185, and 85.8 mAh g−1, respectively. The scalable synthetic method along with the outstanding electrochemical performance of hydrated Bi‐Ti‐EG, which is superior to other reported Bi‐based anode materials, places it as a promising anode material for high‐performance potassium storage.
Funder
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献