Fabrication of Porous Heteroatom‐Doped Carbon Networks via Polymer‐Assisted Rapid Thermal Annealing

Author:

Pagaduan James Nicolas1ORCID,Bhardwaj Ayush1ORCID,McCarty Tailynn Y.2ORCID,Kraemer Stephan3ORCID,Kearney Cathal J.2ORCID,Watkins James J.1,Emrick Todd1ORCID,Katsumata Reika1ORCID

Affiliation:

1. Polymer Science and Engineering Department University of Massachusetts Amherst Amherst MA 01003 USA

2. Department of Biomedical Engineering University of Massachusetts Amherst Amherst MA 01003 USA

3. Center for Nanoscale Systems Harvard University Cambridge MA 02138 USA

Abstract

AbstractPorous carbon materials have increasingly drawn interest for applications ranging from supercapacitive energy storage to bioengineering. However, a simple and scalable fabrication process of such materials, employing low‐cost chemical compounds without sacrificing morphological and chemical control, remains lacking. Here, a novel, rapid, continuous bottom‐up strategy for synthesizing structurally tunable porous carbon network films on insulating and conductive substrates is reported. By employing rapid thermal annealing (RTA) of a commercial polyacrylonitrile‐based blend, simultaneous phase separation and thermal crosslinking are induced, effectively freezing the structure. Subsequent burning of degradable components generates a porous carbon framework ( ≈ 360 to 700 nm) doped with nitrogen and oxygen atoms. Introducing a boron‐containing reagent in the precursor solution enables boron doping and pore size reduction as small as 20 nm, enhancing materials' performance. The direct fabrication of micro‐supercapacitors on stainless steel substrates is demonstrated, achieving an areal capacitance of 12.7 mF cm2 at 50 mV s−1, with ≈98% retention after 10 000 charge/discharge cycles. The benefit of boron doping is further highlighted for wound healing applications. Because RTA is already an established industrial method, this platform directly facilitates the synthesis of functional porous heteroatom‐doped carbon structures using commercial polymers and dopants for various applications.

Funder

Federal Aviation Administration

National Science Foundation

American Chemical Society

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3