Octopi Tentacles‐Inspired Architecture Enables Self‐Healing Conductive Rapid‐Photo‐Responsive Materials for Soft Multifunctional Actuators

Author:

Shi Xiangrong1ORCID,Zhang Kuiyuan1,Chen Juxiang1,Qian Hanqi1,Huang Yudong1,Jiang Bo1ORCID

Affiliation:

1. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China

Abstract

AbstractTo mimic biological systems' healing mechanism and sensory motion, the combination of self‐healing, perception, and actuation in a singular soft artificial material is required, which would be enormously valuable for soft robotics that commit to obtaining multifunction and local sensing capacities approaching living organisms. However, most existing soft somatosensory actuators lack self‐healing capability to injuries, and suffer from insufficient actuating performance and sensitivity, and complicated manufacturing operations. Herein, a bioinspired conductive photo‐responsive architecture is reported. Rapidly photo‐responsive anthracene, self‐healing matrix with dynamic interactions, and high‐conductivity slideable silver nanowires chemically integrated with matrix are respectively utilized to mimic the neuromuscular system and effectors, biological tissue systems, and nerve cords and receptors of octopus tentacles. Such a soft somatosensory actuator exhibits rapid actuation (light‐driven bending velocity, 10o s−1), distinctive intrinsic strain sensitivity (gauge factor, 90.88), and decent self‐healing efficiency (92.2%). As a proof of concept, octopi tentacles‐inspired smart grippers are fabricated for various photo‐responsive motions including bending, weightlifting and object grasping that can contemporaneously detect actions by real‐time resistance changes and provide information feedback. This work is anticipated to bring fresh horizons in the design of multifunctional sensory actuating materials and establish a pathway for the advancement of self‐diagnostic soft robots.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3