Understanding Solvent‐Induced Delamination and Intense Water Adsorption in Janus Transition Metal Dichalcogenides for Enhanced Device Performance

Author:

Kim Sun Woo12,Choi Seon Yeon1,Lim Si Heon12,Ko Eun Bee1,Kim Seunghyun3,Park Yun Chang4,Lee Sunghun5,Kim Hyun Ho12ORCID

Affiliation:

1. School of Materials Science and Engineering Kumoh National Institute of Technology Gumi 39177 South Korea

2. Department of Energy Engineering Convergence Kumoh National Institute of Technology Gumi 39177 South Korea

3. Department of Chemical Engineering Pohang University of Science and Technology Pohang 37673 South Korea

4. Department of Measurement and Analysis National Nanofab Center Daejeon 34141 South Korea

5. Division of Nanotechnology Convergence Research Institute Daegu Gyeongbuk Institute of Science and Technology Daegu 42988 South Korea

Abstract

AbstractRecently, there has been considerable interest in 2D Janus transition metal dichalcogenides owing to their unique structure that exhibits broken mirror symmetry along the out‐of‐plane direction, which offers fascinating properties that are applicable in various fields. This study investigates the issue of process instability in Janus MoSSe, which is mainly caused by its nonzero net dipole moments. It systematically investigates whether the built‐in dipole moments in Janus MoSSe make it susceptible to delamination by most polar solvents and increase its vulnerability to intense moisture adsorption, which leads to the deterioration of its semiconducting properties. To address these issues, as an example of device applications, field‐effect transistors (FETs) based on a van der Waals heterostructure are devised, where the bottom h‐BN (top h‐BN) insulating material is employed to prevent delamination (adsorption of moisture). The fabricated FETs exhibit improved electron mobility and excellent stability under ambient conditions.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3