Manipulating Spin‐Lattice Coupling in Layered Magnetic Topological Insulator Heterostructure via Interface Engineering

Author:

Maity Sujan1,Dey Dibyendu23,Ghosh Anudeepa1,Masanta Suvadip4ORCID,De Binoy Krishna5,Kunwar Hemant Singh5,Das Bikash1,Kundu Tanima1,Palit Mainak1,Bera Satyabrata1,Dolui Kapildeb6,Watanabe Kenji7,Taniguchi Takashi8,Yu Liping23,Taraphder A9,Datta Subhadeep1ORCID

Affiliation:

1. School of Physical Sciences Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India

2. Department of Physics and Astronomy University of Maine Orono ME 04469 USA

3. Department of Materials Science and Engineering University of Central Florida Orlando Florida 32816 USA

4. Bose Institute, Department of Physics Main Campus 93/1, A. P. C. Road Kolkata 700 009 India

5. UGC‐DAE Consortium for Scientific Research Indore Centre, University Campus Khandwa Road Indore 452001 India

6. Lomare Technolgies Limited 6 London Street London EC3R 7LP UK

7. Research Center for Functional Materials National Institute for Materials Science Tsukuba 305‐0044 Japan

8. International Center for Materials Nanoarchitectonics National Institute for Materials Science Tsukuba 305‐0044 Japan

9. Department of Physics Indian Institute of Technology Kharagpur kharagpur West Bengal 721302 India

Abstract

AbstractInduced magnetic order in a topological insulator (TI) can be realized either by depositing magnetic adatoms on the surface of a TI or engineering the interface with epitaxial thin film or stacked assembly of 2D van der Waals (vdW) materials. Herein, the observation of spin‐phonon coupling in the otherwise non‐magnetic TI Bi2Te3 is reported, due to the proximity of FePS3 (an antiferromagnet (AFM), TN ≈ 120 K), in a vdW heterostructure framework. Temperature‐dependent Raman spectroscopic studies reveal deviation from the usual phonon anharmonicity originated from spin‐lattice coupling at the Bi2Te3/FePS3 interface at/below 60 K in the peak position (self‐energy) and linewidth (lifetime) of the characteristic phonon modes of Bi2Te3 (106 and 138 cm−1) in the stacked heterostructure. The Ginzburg‐Landau (GL) formalism, where the respective phonon frequencies of Bi2Te3 couple to phonons of similar frequencies of FePS3 in the AFM phase, is adopted to understand the origin of the hybrid magneto‐elastic modes. At the same time, the reduction of characteristic TN of FePS3 from 120 K in isolated flakes to 65 K in the heterostructure, possibly due to the interfacial strain, which leads to smaller Fe‐S‐Fe bond angles as corroborated by computational studies using density functional theory (DFT). Besides, inserting hexagonal boron nitride within Bi2Te3/FePS3 stacking regains the anharmonicity in Bi2Te3. Controlling interfacial spin‐phonon coupling in stacked heterostructure can have potential application in surface code spin logic devices.

Funder

Basic Energy Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3