Advanced 3D Micro‐Electrodes for On‐Chip Zinc‐Ion Micro‐Batteries

Author:

Naresh Nibagani1,Zhu Yijia1,Luo Jingli1,Fan Yujia1,Wang Tianlei2,Raju Kumar3,De Volder Michael3,Parkin Ivan P.2,Boruah Buddha Deka1ORCID

Affiliation:

1. Institute for Materials Discovery University College London London WC1E 7JE UK

2. Department of Chemistry University College London London WC1H 0AJ UK

3. Institute for Manufacturing Department of Engineering University of Cambridge Cambridge CB3 0FS UK

Abstract

AbstractThe development of high‐performance planar micro‐batteries featuring safer, cost‐effective systems is crucial for powering smart devices such as medical implants, micro‐robots, micro‐sensors, and the Internet of Things (IoT). However, current on‐chip micro‐batteries suffer from limited energy density within constrained device footprints due to challenges in effectively loading high‐capacity active materials onto micro‐electrodes. Innovative designs for advanced micro‐electrodes are needed for on‐chip micro‐batteries. This work introduces advanced, highly porous 3D gold (Au) scaffold‐based interdigitated electrodes (IDEs) as current collectors, which enable effective loading of active materials (Zn and polyaniline) without compromising overall conductivity and significantly increase active mass loading. These 3D Au scaffold‐based micro‐batteries (3D P‐ZIMB) offer substantially higher energy storage performance (≈135% enhancement) compared to conventional micro‐batteries (C‐ZIMB) when materials loaded onto flat Au IDEs. Furthermore, the 3D P‐ZIMB demonstrates higher areal capacities (≈35 µAh cm2) and areal energy (≈31.05 µWh cm2) than most high‐performance on‐chip micro‐batteries, and it delivers a much higher areal power (≈3584.35 µW cm2) than high‐performance on‐chip micro‐supercapacitors. In‐depth postmortem investigations reveal that the 3D P‐ZIMB avoids issues like material peeling, sluggish electrolyte ion diffusion, and dendrite formation on the anode, while maintaining identical material morphologies and structural characteristics. Therefore, this study presents a smart strategy to enhance the electrochemical performance of planar micro‐batteries and advance the field of on‐chip micro‐battery research.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3