A Hybrid Strategy‐Based Ultra‐Narrow Stretchable Microelectrodes with Cell‐Level Resolution

Author:

Li Hanfei12,Han Fei1,Wang Lulu3,Huang Laixin4,Samuel Oluwarotimi Williams1,Zhao Hang1,Xie Ruijie1,Wang Ping1,Tian Qiong1,Li Qingsong1,Zhao Yang1,Yu Mei1,Sun Jing1,Yang Ruofan1,Zhou Xiaomeng1,Li Fei4,Li Guanglin1,Lu Yi3,Guo Peizhi5,Liu Zhiyuan1ORCID

Affiliation:

1. Neural Engineering Centre Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 P. R. China

2. School of Mechanical, Electrical & Information Engineering Shandong University Weihai 264209 P. R. China

3. Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen‐Hong Kong Institute of Brain Science Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research Institutions Shenzhen 518055 P. R. China

4. Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 P. R. China

5. Institute of Materials for Energy and Environment College of Materials Science and Engineering Qingdao University Qingdao 266071 P. R. China

Abstract

AbstractStretchable ultra‐narrow (e.g., 10 µm in width) microelectrodes are crucial for the electrophysiological monitoring of single cells providing the fundamental understanding to the working mechanism of neuro network or other electrically functional cells. Current fabrication strategies either focus on the preparation of normal stretchable electrodes with hundreds of micrometers or millimeters in width by using inorganic conductive materials or develop conductive organic polymer gel for ultra‐narrow electrodes which suffer from low stretchability and instability for long‐term implantation, therefore, it is still highly desirable to explore bio‐interfacial ultra‐narrow stretchable inorganic electrodes. Herein, a hybrid strategy is reported to prepare ultra‐narrow multi‐channel stretchable microelectrodes without using photolithography or laser‐assisting etching. A 10 µm × 10 µm monitoring window is fabricated with enhanced interfacial impedance by the special rough surface. The stretchability achieves to 120% for this 10 µm‐width stretchable electrode. Supported by these superior properties, it is demonstrated that the stretchable microelectrodes can detect electrophysiological signals of single cells in vitro and collect electrophysiological signals more precisely in vivo. The reported strategy will open up the accessible preparation of the fine‐size stretchable microelectrode. It will significantly improve the resolution of monitoring and stimulation of inorganic stretchable electrodes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3