When Structured Light Encounters Liquid Crystals

Author:

Zhou Le1ORCID,Zhong Tingjun2,Liu Yuanfeng1,Yu Taoyuan1,Neyts Kristiaan3,Luo Zhiyou1,Wang Huihui4,Sun Jingbo1ORCID,Zhou Ji1,Shen Yang1

Affiliation:

1. School of Materials Science and Engineering State Key Lab of New Ceramics and Fine Processing Tsinghua University Beijing 100084 P. R. China

2. Department of Chemistry College of Science China Agricultural University Beijing 100083 P. R. China

3. The Hong Kong University of Science and Technology SKLADT Clear Water Bay Kowloon Hong Kong

4. Key Laboratory of Optoelectronics Technology Ministry of Education Beijing University of Technology Beijing 100124 P. R. China

Abstract

AbstractStructured light refers to the light field tailored by various degrees of freedom including intensity, phase, and polarization states in both spatial and temporal domains, which may greatly vitalize the technologies in both optics, such as the next‐generation optical communication as well as subwavelength imaging and the materials science in both fabrication and characterization. The structured characteristics of the structure light need materials also with structured optical properties that can generate or manipulate structured light in a straightforward way, which can be well satisfied by liquid crystals, a soft mater that can self‐assemble into tunable ordered structures through external stimuli. This review summarizes the research progress of the liquid crystal‐based devices used in structured light generations and modulations, including the well‐established techniques in the market, like the spatial light modulator, q‐plate and the liquid crystal integrated optical metasurfaces. Especially, light‐matter interactions are discussed from the topological view of both the structured light and the liquid crystal structures. Such a perfect matching in topology makes the liquid crystal a promising star together with structured light in future optic and photonic technologies.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3