Pre‐Protonated Vanadium Hexacyanoferrate for High Energy‐Power and Anti‐Freezing Proton Batteries

Author:

Dong Xiaoyu1,Li Zhiwei1,Luo Derong1,Huang Kangsheng1,Dou Hui1ORCID,Zhang Xiaogang1

Affiliation:

1. Jiangsu Key Laboratory of Electrochemical Energy Storage Technology College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China

Abstract

AbstractProton batteries have been considered as an innovative energy storage technology owing to their high safety and cost‐effectiveness. However, the development of fast‐charging proton batteries with high energy/power density is greatly limited by feasible material selection. Here, the pre‐protonated vanadium hexacyanoferrate (H‐VHCF) is developed as a proton cathode material to alleviate the capacity loss of proton‐free electrode materials during electrochemical tests. The pre‐protonation process realizes fast and long‐distance transport of protons by shortening diffusion path and reducing migration barriers. Benefitting from the enhanced hydrogen bonding network combined with dual redox reactions of V and Fe in protonated H‐VHCF cathode, a high energy density of 74 Wh kg−1 at 1.1 kW kg−1, and a maximum power density of 54 kW kg−1 at 65 Wh kg−1 is achieved for the asymmetric proton batteries coupling with MoO3/MXene anode. Proton transport and double oxidation‐reduction center are verified by theoretical calculations and ex situ experimental measurements. Considering the anti‐freezing availability of proton batteries, 82.5% of its initial capacity is maintained after 10000 cycles under −40 °C at 0.5 A g−1. As a proof‐of‐concept, flexible device fabricated by optimized electrodes and hydrogel electrolytes can power up a light‐emitting diode even under a bent state.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3