Nanoscale Disorder and Deintercalation Evolution in K‐Doped MoS2 Analysed Via In Situ TEM

Author:

Shao Shouqi12ORCID,Tainton Gareth R.M.12ORCID,Kuang W. J.3ORCID,Clark Nick12ORCID,Gorbachev Roman23ORCID,Eggeman Alexander1ORCID,Grigorieva Irina V.23ORCID,Kelly Daniel J.124ORCID,Haigh Sarah J.12ORCID

Affiliation:

1. Department of Materials University of Manchester Oxford Road Manchester M13 9PL UK

2. National Graphene Institute University of Manchester Oxford Road Manchester M13 9PL UK

3. Department of Physics and Astronomy University of Manchester Oxford Road Manchester M13 9PL UK

4. DTU Nanolab Technical University of Denmark DK‐2800 Kgs. Lyngby Denmark

Abstract

AbstractIntercalation and deintercalation processes in van der Waals crystals underpin their use in nanoelectronics, energy storage, and catalysis but there remains significant uncertainty regarding these materials’ structural and chemical heterogeneity at the nanoscale. Deintercalation in particular often controls the robustness and cyclability of the involved processes. Here, a detailed analysis of potassium ordering and compositional variations in as‐synthesised K intercalated MoS2 as well an analysis of deintercalation induced changes in the structure and K/Mo elemental composition is presented. By combining 4D scanning transmission electron microscopy (4DSTEM), in situ atomic resolution STEM imaging, selected area electron diffraction (SAED) and energy dispersive X‐ray spectroscopy (EDS) the formation of previously unknown intermediate superstructures during deintercalation is revealed. The results provide evidence supporting a new deintercalation mechanism that favors formation of local regions with thermodynamically stable ordering rather than isotropic release of K. Systematic time‐temperature measurements demonstrate the deintercalation behavior to follow first‐order kinetics, allowing compositional and superstructural changes to be predicted. It is expected that the in situ correlative STEM‐EDS/SAED methodology developed in this work has the potential to determine optimal synthesis, processing and working conditions for a variety of intercalated or pillared materials.

Funder

Engineering and Physical Sciences Research Council

European Research Council

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3