Zinc‐Imidazolate Films as an All‐Dry Resist Technology

Author:

Corkery Peter1ORCID,Waltz Kayley E.1ORCID,Eckhert Patrick M.2ORCID,Ahmad Mueed34ORCID,Kraetz Andrea1ORCID,Miao Yurun1ORCID,Lee Dennis T.14ORCID,Abdel‐Rahman Mohammed K.2ORCID,Lan Yucheng5ORCID,Haghi‐Ashtiani Paul5,Stein Aaron3ORCID,Boscoboinik J. Anibal34ORCID,Tsapatsis Michael16ORCID,Fairbrother D. Howard2ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA

2. Department of Chemistry Johns Hopkins University Baltimore MD 21218 USA

3. Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA

4. Department of Materials Science and Chemical Engineering Stony Brook University Stony Brook NY 11790 USA

5. Department of Physics and Engineering Physics Morgan State University Baltimore MD 21251 USA

6. Applied Physics Laboratory Johns Hopkins University Laurel MD 20723 USA

Abstract

AbstractMotivated by the drawbacks of solution phase processing, an all‐dry resist formation process is presented that utilizes amorphous zinc‐imidazolate (aZnMIm) films deposited by atomic/molecular layer deposition (ALD/MLD), patterned with electron beam lithography (EBL), and developed by novel low temperature (120 °C) gas phase etching using 1,1,1,5,5,5‐hexafluoroacetylacetone (hfacH) to achieve well‐resolved 22 nm lines with a pitch of 30 nm. The effects of electron beam irradiation on the chemical structure and hfacH etch resistance of aZnMIm films are investigated, and it is found that electron irradiation degrades the 2‐methylimidazolate ligands and transforms aZnMIm into a more dense material that is resistant to etching by hfacH and has a C:N:Zn ratio effectively identical to that of unmodified aZnMIm. These findings showcase the potential for aZnMIm films to function in a dry resist technology. Sensitivity, contrast, and critical dimensions of the patterns are determined to be 37 mC cm−2, 0.87, and 29 nm, respectively, for aZnMIm deposited on silicon substrates and patterned at 30 keV. This work introduces a new direction for solvent‐free resist processing, offering the prospect of scalable, high‐resolution patterning techniques for advanced semiconductor fabrication processes.

Funder

U.S. Department of Energy

Office of Science

Basic Energy Sciences

National Institute on Minority Health and Health Disparities

National Institute of General Medical Sciences

Semiconductor Research Corporation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Reference67 articles.

1. Extreme ultraviolet lithography: A review

2. R. S.Wise Proc. SPIE 11612 Advances in Patterning Materials and Processes XXXVIII 1161203 2021.

3. B.Volosskiy T. W.Weidman S. S.Tan C.Wu K.Gu (LAM Research Corporation)World Patent WO2020132281A1 2020.

4. Organic and inorganic–organic thin film structures by molecular layer deposition: A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3