Affiliation:
1. Information Materials and Intelligent Sensing Laboratory of Anhui Province Anhui University Hefei 230601 P. R. China
2. Institute of Health Sciences and Technology Institutes of Material Science and Information Technology Anhui University Hefei 230601 P. R. China
3. Key Laboratory of Materials Physics Anhui Key Lab of Nanomaterials and Nanotechnology Institute of Solid State Physics Hefei Institutes of Physical Science Chinese Academy of Science Hefei 230031 P. R. China
4. Department of Physical and Chemical Analysis Anhui Provincial Center for Disease Control and Prevention Hefei 230601 P. R. China
Abstract
AbstractNatural proteins display organized hierarchical structures and tailored functionalities that cannot be achieved by synthetic approaches, highlighting the increased interest in developing protein‐based materials. Protein self‐assembly allows fabricating sophisticated supramolecular structures from relatively simple building blocks, a strategy naturally employed by amyloid proteins and intrinsically disordered proteins. However, the design of self‐assembled bioinspired materials with multi functionalities is still challenging. Inspired by the natural self‐assembly proteins (such as mussel foot proteins and amyloid proteins), a temperature‐inducible engineering programable hydrogel‐like amyloid nanostructure is developed by using a genetically modular fusion approach. The resulting hydrogel‐like assemblies display outstanding adhesive capacity, high stability, and broad substrate universality. The employed SpyCatcher/SpyTag system allows modifying the hydrogel‐like assemblies with any functional proteins of interest. Owing to their strong adhesive capacity and functional flexibility, such amyloid fibril‐based hydrogel shows advantages in the immobilization of diverse enzymes for highly efficient biocatalysis, fabrication of multi‐layered functional coatings, and construction of functionalized 3D scaffold for cell culture. Overall, a modular and straightforward approach is established to obtain a genetically programable nanostructure platform. The novel hydrogel‐like assemblies described here may be potentially applied to but not limited to synthetic biology, surface/interface engineering, and tissue engineering.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Anhui Province
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献