Detectable Adhesives: Nondestructive Detection of Adhesion

Author:

Liu Ziyang1ORCID,Wang Yue2,Wu Ming3,Yin Shuangbo3,Li Qingning1,Cao Qiang1,Zheng Sijie1,Li Weizheng1,Wang Xiaoliang3,Yan Feng14ORCID

Affiliation:

1. Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Negative Carbon Technologies Suzhou Key Laboratory of Soft Material and New Energy College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China

2. Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA

3. School of Chemistry and Chemical Engineering Nanjing University Nanjing China

4. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai China

Abstract

AbstractMetal‐to‐metal adhesives are vital across diverse sectors including automotive, aerospace, and industrial assembly. However, traditional adhesion detection methods are mainly based on the fracture mechanism, posing challenges for nondestructive detection. Here, a nondestructive method that leverages electrical signals to monitor the adhesion state of metal interfaces in real‐time is presented. The approach utilizes detectable adhesives (DA) synthesized from poly(ionic liquid) (PIL), which not only exhibit robust adhesion properties (4.9 MPa) but also function as ionic conductors. By correlating changes in capacitance and resistance with the adhesive state, the method allows for in situ monitoring of the curing process, prediction of adhesion strength, and early detection of potential failures. This dual‐sensing capability, combining electrical and mechanical aspects, enhances understanding of adhesive behavior in diverse conditions, presenting a fresh approach for digitally transforming adhesive technologies.

Funder

National Natural Science Foundation of China

Collaborative Innovation Center of Suzhou Nano Science and Technology

Priority Academic Program Development of Jiangsu Higher Education Institutions

Collaborative Innovation Center for Water Treatment Technology and Materials

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3