High Power Density Ag2Se/Sb1.5Bi0.5Te3‐Based Fully Printed Origami Thermoelectric Module for Low‐Grade Thermal Energy Harvesting

Author:

Franke Leonard1,Georg Rösch Andres1,Khan Muhammad Irfan1,Zhang Qihao1,Long Zhongmin2,Brunetti Irene13,Joglar Matías Nicolas4,Lara Ana Moya4,Simão Claudia Delgado4,Geßwein Holger5,Nefedov Alexei6,Eggeler Yolita M.2,Lemmer Uli137,Mallick Md Mofasser1ORCID

Affiliation:

1. Light Technology Institute Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany

2. Laboratory for Electron Microscopy Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany

3. InnovationLab GmbH Speyerer Strasse 4 69115 Heidelberg Germany

4. Eurecat Centre Tecnològic de Catalunya Functional Printing and Embedded Devices Unit Mataró Catalonia 08302 Spain

5. Institut für Angewandte Materialien (IAM‐ESS) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1D 76344 Eggenstein‐Leopoldshafen Germany

6. Institute of Functional Interfaces Karlsruhe Institute of Technology (KIT) 76344 Eggenstein‐Leopoldshafen Germany

7. Institute of Microstructure Technology Karlsruhe Institute of Technology (KIT) 76344 Eggenstein‐Leopoldshafen Germany

Abstract

AbstractPrinting technologies have the potential to reduce the manufacturing costs of many electronic devices significantly. Here, a scalable manufacturing route for high‐performance fully printed thermoelectric generators (TEGs) as a cost‐effective solution for energy harvesting is demonstrated. This work presents a facile one‐pot synthesis method to develop a high‐performance Ag2Se‐based n‐type paste, which is used to fabricate a fully printed origami TEG by employing the Ag2Se‐based material for the n‐type legs and a previously reported Bi‐Sb‐Te‐based paste for the p‐type legs. The n‐type film exhibits a power factor of 13.5 µW cm−1 K−2 and a maximum figure‐of‐merit (ZT) of ≈ 0.92. Furthermore, printable carbon paste is introduced as an effective interface between the thermoelectric and electrode materials, which reduces the contact resistances in the thermoelectric device. The origami folded TEG exhibits an open‐circuit voltage (VOC) of 284 mV, a power output of 370.88 µW, and an exceptionally high power density (pmax) of 10.72 Wm−2 at a temperature difference (∆T) of 80.7 K, considering that the TEG fabrication does not involve any pressure treatment and vacuum sintering. These results underscore the scalability of the presented manufacturing process and the capability of printed origami TEGs for powering the Internet of Things (IoT) with low‐grade waste heat.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Deutsche Bundesstiftung Umwelt

H2020 European Research Council

Horizon 2020 Framework Programme

Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3