Multifunctional Aminoglycoside Antibiotics Modified SnO2 Enabling High Efficiency and Mechanical Stability Perovskite Solar Cells

Author:

Yan Tong12,Zhang Chenxi12,Li Shiqi12,Wu Yukun12,Sun Qinjun12,Cui Yanxia12,Hao Yuying12ORCID

Affiliation:

1. College of Physics and Optoelectronics Key Lab of Advanced Transducers and Intelligent Control System Taiyuan University of Technology Taiyuan 030024 China

2. Shanxi‐Zheda Institute of Advanced Materials and Chemical Engineering Taiyuan 030000 China

Abstract

AbstractSnO2 as an electron transport layer (ETL) has been widely used in regular planar perovskite solar cells (PSCs) owing to its high optical transmittance, less photocatalytic activity, and low‐temperature processing. However, SnO2‐based PSCs still face many challenges which greatly impair their efficiency and stability of PSCs. Herein, a novel and effective multifunctional modification strategy is proposed by incorporating streptomycin sulfate (STRS) molecules with multiple functional groups into SnO2 ETL. STRS can significantly suppress SnO2 nanoparticle agglomeration, improve the electronic property of SnO2, as well as reduce nonradiative recombination. At the same time, interfacial residual tensile stress is released and the interfacial energy level alignment becomes more matched. As a result, the STRS‐modified PSCs achieve a higher efficiency of 22.89% compared to 20.61% of the control device and exhibit a hysteresis‐free feature. The humidity and thermal stability of PSCs based on STRS‐SnO2 are significantly improved. Furthermore, the efficiency of flexible devices increased from 19.74% to 20.79%, and the devices still maintain >80% of initial PCE after 4500 bending cycles with a bend radius of 5 mm. This study provides a low‐cost, facile, and efficient strategy for achieving high efficiency and stability in PSCs.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3