Tailoring Zero‐Field Magnetic Skyrmions in Chiral Multilayers by a Duet of Interlayer Exchange Couplings

Author:

Chen Xiaoye1,Tai Tommy1,Tan Hui Ru1,Tan Hang Khume1,Lim Royston1,Suraj T. S.2,Ho Pin1,Soumyanarayanan Anjan12ORCID

Affiliation:

1. Institute of Materials Research & Engineering Agency for Science Technology & Research (A*STAR) Singapore 138634 Singapore

2. Department of Physics National University of Singapore Singapore 117551 Singapore

Abstract

AbstractMagnetic skyrmions have emerged as promising elements for encoding information toward biomimetic computing applications due to their pseudoparticle nature and efficient coupling to spin currents. A key hindrance for skyrmionic devices is their instability against elongation at zero magnetic field (ZF). Prevailing materials approaches focused on tailoring skyrmion energetics have found ZF configurations to be highly sensitive, which imposes significant growth constraints and limits their device scalability. This work demonstrates that designer ZF skyrmion configurations can be robustly stabilized within chiral multilayer stacks by exploiting a duet of interlayer exchange couplings (IECs). Microscopic imaging experiments show that varying the two IECs enables the coarse and fine‐tuning of ZF skyrmion stability and density. Micromagnetic simulations reveal that the duo‐IEC approach is distinguished by its influence on the kinetics of skyrmion nucleation, in addition to the ability to tailor energetics, resulting in a substantially expanded parameter space, and enhanced stability for individual ZF skyrmions. This study underscores the importance of IEC as a means of stabilizing and controlling ZF skyrmions, paving the way to scalable skyrmion‐based devices.

Funder

Agency for Science, Technology and Research

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3