Affiliation:
1. Institute of Mechanics Chinese Academy of Sciences Beijing 100190 China
2. Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
3. School of Engineering Science University of Chinese Academy of Sciences Beijing 100049 China
4. Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei 230031 China
Abstract
AbstractDynamical performance of multilayer graphdiyne (MLGDY) with ultra‐low density and flexible features is investigated using laser‐induced micro‐projectile impact testing (LIPIT) and molecular dynamics (MD) simulations. The results reveal that the MLGDY exhibits excellent dynamic energy dissipation ability mainly due to the excellent in‐plane wave velocity resulting from the diacetylene linkages between benzene rings. In addition, the unique multiple crack tips and their propagation further promote the energy dissipation capability. The energy dissipation capability of the MLGDY is found to reduce with increasing thickness due to compression‐shear induced failure of several upper layers of relatively thick MLGDY, which hinders delocalized energy dissipation ability. Moreover, the impact resistance force of the MLGDY increases almost linearly with increasing impact velocity, demonstrating the applicability of the traditional compressive resistance theory of laminates for MLGDY. Based on the experimental observation and the simulation results, two feasible strategies, i.e., combining with high‐strength multi‐layer graphene and rotated graphdiyne (GDY) interlayer to avoid stacking of sp‐hybridized carbon atoms, are proposed to further improve the impact resistance of the MLGDY. The study provides direct proof of excellent impact resistance of the versatile MLGDY and proposes feasible fabrication strategies to further improve the anti‐ballistic performance in future.
Funder
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献