Paper‐Mill Waste Reinforced Nanofluidic Membrane as High‐Performance Osmotic Energy Generators

Author:

Song Guanghui1,Zhan Yan1,Hu Yajie1,Rao Jun1,Li Nan1,Wu Zhongxuan1,Su Zhenhua2,Lü Baozhong1,Liu Ruiping3,Jiang Bo4,Chen Gegu1,Peng Feng15ORCID

Affiliation:

1. Beijing Key Laboratory of Lignocellulosic Chemistry Beijing Forestry University Beijing 100083 China

2. China National Pulp and Paper Research Institute Co., Ltd Beijing 100102 China

3. Department of Materials Science and Engineering China University of Mining & Technology (Beijing) Beijing 100083 China

4. Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China

5. Engineering Research Center of Forestry Biomass Materials and Energy Ministry of Education Beijing Forestry University Beijing 100083 China

Abstract

AbstractNanofluidic membranes consisting of 2D materials and polymers are considered promising candidates for harvesting osmotic energy from river estuaries owing to their unique ion channels. However, micron‐scale polymer chains agglomerate in the nanochannels, resulting in steric hindrance and affection ion transport. Herein, a nanofluidic membrane is designed from MXene and xylan nanoparticles that are derived from paper‐mill waste. The demonstrated membrane reinforced by paper‐mill waste has the characteristics of green, low‐cost, and outstanding performance in mechanical properties and surface‐charge‐governed ionic transport. The MXene/carboxmethyl xylan (CMX) membrane demonstrates a high surface charge (ζ‐potential of −44.3 mV) and 12 times higher strength (284.96 MPa) than the pristine MXene membrane. The resulting membrane shows intriguing features of high surface charge, high ion selectivity, and reduced steric hindrance, enabling it high osmotic energy generation performance. A potential of the nanofluidic membrane is ≈109 mV, the corresponding current of up to 2.73 µA, and the output power density of 14.52 mW m−2 are obtained under a 1000‐fold salt concentration gradient. As the electrolyte pH increases, the power density reaches 56.54 mW m−2. This works demonstrate that CMX nanoparticles can effectively enhance the properties of the nanofluidic membrane and provide a promising strategy to design high‐performance nanofluidic devices.

Funder

National Natural Science Foundation of China

Beijing Nova Program

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3