Base Metals Induced Oxygen Migration and Adjustable Performance in Multifunctional Oxide Heterojunction Devices

Author:

Yang Miaoqian1,Liu Yukuai2,Chen Guangzheng1,Ou Jiahui1,Peng Jiazhi1,Huang Haoliang3,Zeng Xierong1,Leung Chi Wah4,Huang Chuanwei1ORCID

Affiliation:

1. Shenzhen Key Laboratory of Special Functional Materials Guangdong Provincial Key Laboratory of New Energy Materials Service Safety College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China

2. College of Electronic Information and Mechatronic Engineering Zhaoqing University Duanzhou District Zhaoqing 526061 China

3. Quantum Science Center of Guangdong‐Hong Kong‐Macao Greater Bay Area Shenzhen 518045 China

4. Department of Applied Physics The Hong Kong Polytechnic University Hung Hom Hong Kong 999077 China

Abstract

AbstractThe chemical and electronic interactions at metal/oxide heterojunctions is pivotal in determining the electronic properties of oxide devices utilized in microelectronics, catalysis, and photovoltaic systems. In this study, interfacial oxidation migrations within a model heterostructure system, consisting of a La0.7Sr0.3MnO3 film overlaid by various metallic (Ti, Al, Cu, Ag, and Au) ultrathin layers are systematically investigated. It is experimentally demonstrated that at elevated deposition temperature, the oxygen‐active ultrathin overlayers of base metals such as Ti and Al significantly derive oxygen from the underlying La0.7Sr0.3MnO3 film, inducing a perovskite to brownmillerite phase transition in the underlying functional oxide film. Conversely, no structural transitions are observed for La0.7Sr0.3MnO3 film when it is capped by noble metals (Au, Ag), which possess relative high oxidation formation energy. These observations are crucial for the development of novel crystalline and electronic architectures in metal/oxide heterostructures, offering a refined approach to modulate interfacial reactivity without compromising the functionality of oxide‐based heterojunction devices.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3