Affiliation:
1. Shenzhen Key Laboratory of Advanced Thin Films and Applications Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen Guangdong 518060 P. R. China
2. Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies School of Materials and Energy Southwest University Chongqing 400715 P. R. China
3. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 P. R. China
Abstract
AbstractA unique strain‐mediated lattice rotation strategy is introduced via nanocompositing to upsurge the optimized limits in the composition‐to‐structural pathway on rationally engineering the efficient thermoelectric material. In this study, a special lattice rotation via strain engineering is realized to optimize the desired electronic and chemical environment for enhancing thermoelectric properties in n‐type Bi2S2Se. This approach results in a unique transport phenomenon to assist high‐energy electrons in transferring through the optimized transport channels, and appropriate structure disparity to significantly localize phonons. As a result, Sb over Cl doping in Bi2S2Se gently reduces Eg and introduces defect states in bandgap with shifting down the Fermi level, thus causing increase in carrier concentration, which contributes to a higher power factor of ≈7.18 µW cm−1 K−2 (at T = 773 K). Besides, a lower thermal conductivity of ≈0.49 W m−1 K−1 is driven through lattice strain and defect engineering. Consequently, an ultra‐high ZTmax = 1.13 (at T = 773 K) and a high ZTave = 0.54 (323 K‐773 K) are realized. This study not only leads to an extraordinary thermoelectric performance but also reveals a unique paradigm for electron transportation and phonon localization via lattice strain engineering.
Funder
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献