Bio‐Inspired Stimuli‐Responsive Ti3C2Tx/PNIPAM Anisotropic Hydrogels for High‐Performance Actuators

Author:

Yan Qian1,Ding Renjie1,Zheng Haowen1,Li Pengyang1,Liu Zonglin1,Chen Zhong1,Xiong Jinhua1,Xue Fuhua1,Zhao Xu1,Peng Qingyu1ORCID,He Xiaodong1

Affiliation:

1. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments Center for Composite Materials and Structures Harbin Institute of Technology Harbin 150080 P. R. China

Abstract

AbstractNear‐infrared (NIR) light‐responsive hydrogels have the advantages of high precision, remote control and excellent biocompatibility, which are widely used in soft biomimetic actuators. The process by which water molecules diffuse can directly affect the deformation of hydrogel. Therefore, it remains a serious challenge to improve the response speed of hydrogel actuator. Herein, an anisotropic photo‐responsive conductive hydrogel is designed by a directional freezing method. Due to the anisotropy of the MXene‐based PNIPAM/MXene directional (PMD) hydrogel, its mechanical properties and conductivity are enhanced in a specific direction. At the same time, with the presence of the internal directional channels and the assistance of capillary force, the PMD hydrogel can achieve a volume deswelling of 70% in 2 s under light irradiation, further building a hydrogel actuator with a fast response performance. Additionally, the hydrogel actuator can lift an object 40 times its weight by a distance of 6 mm, realizing the advantages of both rapid responsiveness and high driving strength, which makes the hydrogel actuator have important application significance in remote control, microflow valve, and soft robot.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3