Affiliation:
1. Department of Biomedical Engineering School of Medicine Shenzhen University Shenzhen Guangdong 518000 China
2. Department of Mechanical Engineering Shenzhen University Shenzhen Guangdong 518000 China
3. College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518000 China
4. Department of Urology Inst Translat Med. The First Affiliated Hospital of Shenzhen University Shenzhen Second People's Hospital Shenzhen China
Abstract
AbstractThe challenges of replicating the complex mechanical and structural diversity of natural tissues in vitro by leveraging multi‐material digital light processing (DLP) bioprinting are addressed. This technique utilizes PEGDA‐AAm bio‐ink to develop multi‐component, cell‐laden hydrogel constructs with varying moduli. These constructs not only possess heterogeneous mechanical properties but also feature complex architectures and precisely engineered surface microstructures. The hydrogel microfluidic chips are successfully fabricated with perfusable microchannels, embedding various cell types within the matrix. This approach enables the bioprinting of intricate cell‐laden structures with unique surface topologies, such as spiral grooves and triply periodic minimal surfaces (TPMS), which effectively influence cell alignment, spreading, and migration. By integrating various cell‐laden PA hydrogels, the diverse mechanical moduli of biological tissues, including bone, liver lobules, and vascular networks are replicated. This technique ensures high‐fidelity differentiation between cell types and regions. These findings provide valuable insights into the impact of substrate modulus and structure on cell behavior, underscoring the potential of multi‐component, multi‐modulus hydrogel constructs in creating sophisticated structures with custom‐tailored mechanical properties. This study significantly advances the field by demonstrating the feasibility and effectiveness of multi‐material DLP bioprinting in developing complex, functionally relevant tissue models for tissue engineering and regenerative medicine.
Funder
National Natural Science Foundation of China
Shenzhen Science and Technology Innovation Program
Basic and Applied Basic Research Foundation of Guangdong Province
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献