Unlocking the Charge‐Migration Mechanism in S‐Scheme Junction for Photoreduction of Diluted CO2 with High Selectivity

Author:

Wang Kai1,Cheng Qiang1,Hou Weidong2,Guo Huazhang2,Wu Xinhe1,Wang Juan1,Li Jinmao1,Liu Zheng3,Wang Liang2ORCID

Affiliation:

1. College of Urban and Environmental Sciences, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Huangshi Key Laboratory of Prevention and Control of Soil Pollution Hubei Normal University Huangshi 435002 P. R. China

2. Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 P. R. China

3. School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore

Abstract

AbstractThe rational design of an S‐scheme heterojunctions in hybrid semiconductors to realize separated charge carriers and sufficient redox ability is considered as an attractive way to achieve high photocatalytic activity in diluted CO2 reduction (DCR). An S‐scheme heterojunction formed in the fibrous Ta2O5/Ag2S nanostructures is proposed for improving the photocatalytic performance in DCR under simulated solar irradiation. Benchmark CH4 production rates of 132.3 µmol g−1 are obtained with 93.1% selectivity over optimal catalyst ASTO‐2. The remarkable activity in photocatalytic DCR of Ta2O5/Ag2S is attributed to the unique 0D/1D structure and effective charge separation by the photoinduced strong internal electric field and S‐scheme mechanism. The measurements of in situ X‐ray photoelectron spectroscopy, femtosecond transient absorption spectroscopy, and electron paramagnetic resonance further confirm the photoinduced carrier transfer pathways following the S‐scheme mechanism. This research can provide a new strategy for designing the S‐scheme heterojunctions to improve the photocatalytic performance of diluted CO2 conversion.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3