Performance Degradation and Protective Effects of Atomic Layer Deposition for Mg‐based Thermoelectric Modules

Author:

Ying Pingjun1,Villoro Ruben Bueno2,Bahrami Amin1,Wilkens Lennart1,Reith Heiko1,Mattlat Dominique Alexander2,Pacheco Vicente3,Scheu Christina2,Zhang Siyuan2,Nielsch Kornelius1ORCID,He Ran1

Affiliation:

1. Institute for Metallic Materials Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20 01069 Dresden Germany

2. Nanoanalytics and Interfaces Max‐Planck‐Institut für Eisenforschung GmbH Max‐Planck‐Straße 1 40237 Düsseldorf Germany

3. Fraunhofer Institute for Manufacturing Technology and Advanced Materials Winterbergstraße 28 01277 Dresden Germany

Abstract

AbstractThermoelectric technology has witnessed a resurgence in recent years due to increasing demands for sustainable energy sources and efficient cooling systems. Recently, the introduction of Te‐free thermoelectric modules using non‐toxic, abundant materials including p‐type MgAgSb and n‐type Mg3(Sb,Bi)2 marked a significant breakthrough. Despite promising performance, questions persist regarding long‐term robustness and stability, especially in harsh environments. In this study, a thorough exploration of thermoelectric modules is conducted, focusing on their performance degradation under various conditions. Through elemental mapping analysis, degradation mechanisms are identified within the modules during cycling in argon environments, where atomic migrations and the formation of complex oxides at contact regions are key factors. Furthermore, cycling tests in air reveal significant degradation, prompting the exploration of protective strategies. Surface coatings using atomic layer deposition (ALD) emerge as a promising solution, particularly by HfO2, demonstrating superior protective effects. Furthermore, re‐soldering effectively restores module performance is found, highlighting the importance of developing advanced soldering techniques to promote magnesium‐based thermoelectric technology as a sustainable alternative to Bi2Te3. These findings emphasize the importance of exploring novel contact materials and demonstrate the potential of ALD as a universal approach to enhancing module reliability and robustness.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Reference50 articles.

1. a)Thermoelectric Coolers Market by Model Design and End‐User Industry: Global Opportunity Analysis and Industry Forecast 2021–20302021 https://www.researchandmarkets.com/reports/5480822/thermoelectric‐coolers‐market‐by‐model‐design#product‐‐toc;

2. Thermoelectric generators: A review of applications

3. Field test of a geothermal thermoelectric generator without moving parts on the Hot Dry Rock field of Timanfaya National Park

4. Thermoelectric Devices: A Review of Devices, Architectures, and Contact Optimization

5. R. J.Goldfarb U. S. Geological Survey 2015 https://doi.org/10.3133/fs20143077.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3