Coordinated Solvent Molecules Enable the Excellent Capabilities of Two Zn2+‐Based Complexes in Detecting l‐Arginine via Long‐Lived Luminescence Recovery

Author:

Wang Hui‐Yu1,Miao Lei1,Zhang Bo‐Lun2,Sun Ying‐Ji1,Chen Jun2,Liu Shuqin1,Zhang Wen‐Qi1,Wang Ting1,Zhang Jian‐Jun1ORCID

Affiliation:

1. School of Chemistry Dalian University of Technology Dalian 116024 China

2. School of Chemical Engineering Dalian University of Technology Dalian 116024 China

Abstract

AbstractLuminescence metal–organic materials (MOMs) are widely used as probes for detection. However, most of such probes are based on fluorescence and work in either turn‐off or turn‐on mode. In contrast, long‐lived (>10 ms) probes (LLPs) with recovery response to analyte are quite rare. Herein “solvation complex” strategy is used to prepare two new afterglow complexes with multiple coordinated solvents, trans‐complex 1 with both delayed fluorescence (DF) and room temperature phosphorescence (RTP), and cis‐complex 2 with RTP. Remarkably, they can serve as selective and recovery LLPs for l‐Arginine detection, with limit of detection down to 1.0 × 10−7 M. In addition, heating/fumigation can induce reversible arousal/silence of their afterglow, while H2O/DMSO vapor fumigation causes reversible crystalline‐to‐crystalline transformation between them. Detailed mechanism studies reveal that the change in coordinated solvent, including loss/acquisition, exchange, or replacement, plays a key role in such afterglow multi‐stimuli‐responsive properties. This work not only shows the potential of such long‐lived luminescence complex for recovery detection, but also reveals the unique advantages of solvation complex in the preparation of afterglow multi‐stimuli‐responsive materials

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3