A Biological Approach to Metalworking Based on Chitinous Colloids and Composites

Author:

Ng Shiwei1,Ng Guan Zhi Benjamin1,Simpson Robert E.2,Fernandez Javier G.1ORCID

Affiliation:

1. Engineering and Product Development Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore

2. School of Engineering University of Birmingham Edgbaston Birmingham B15 2TT UK

Abstract

AbstractBiological systems evolve with minimum metabolic costs and use common components, and they represent guideposts toward a paradigm of manufacturing that is centered on minimum energy, local resources, and ecological integration. Here, a new method of metalworking that uses chitosan from the arthropod cuticle to aggregate colloidal suspensions of different metals into solid ultra‐low‐binder‐content composites is demonstrated. These composites, which can contain more than 99.5% metal, simultaneously show bonding affinity for biological components and metallic characteristics, such as electrical conductivity. This approach stands in contrast with existing metalworking methods, taking place at ambient temperature and pressure, and being driven by water exchange. Furthermore, all the nonmetallic components involved are metabolized in large amounts in every ecosystem. Under these conditions, the composites’ ability to be printed and cast into functional shapes with metallic characteristics is demonstrated. The affinity of chitometallic composites for other biological components also allows them to infuse metallic characteristics into other biomaterials. The findings and robust manufacturing examples go well beyond basic demonstrations and offer a generalizable new approach to metalworking. The potential for a paradigm shift toward biomaterials based on their unique characteristics and the principles of their manufacturing methods is highlighted.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3