Transient Electro‐Graphitization of MOFs Affecting the Crystallization of Ruthenium Nanoclusters for Highly Efficient Hydrogen Evolution

Author:

Karim Golam Masud1ORCID,Patra Amalika1,Deb Sujit Kumar1,Upadhya Hemanta1,Das Snehasish1,Mukherjee Priyam1,Ahmad Waleed2,Barman Narad3,Thapa Ranjit3,Dambhare Neha V4,Rath Arup Kumar4,Das Jaysri5,Manna Uttam5,Urkude Rajashri R.6,Oh Youngtak2,Maiti Uday Narayan1ORCID

Affiliation:

1. Department of Physics Indian Institute of Technology Guwahati Guwahati 781039 India

2. Center for Sustainable Environment Research Korea Institute of Science and Technology Seoul 02792 The Republic of Korea

3. Department of Physics SRM University AP Amaravati Andhra Pradesh 522240 India

4. CSIR‐National Chemical Laboratory Pune Maharashtra 411008 India

5. Department of Chemistry Indian Institute of Technology Guwahati Guwahati 781039 India

6. Beamline Development & Application Section Bhabha Atomic Research Center Trombay Mumbai 400085 India

Abstract

AbstractFine control over the graphitization level of carbonized nanostructures can play a strategic role in tuning the crystallization of supported nanocatalysts, thereby modulating the kinetics of catalysis. However, realizing the synergistic interplay of graphitization‐tunable support and supported catalysts poses a significant challenge. This study proposes a current pulse‐induced ultrafast strategy for developing MOF‐derived graphitic nano‐leaves (GNL) and supported ultrafine ruthenium nanoclusters exhibiting selective crystallization states depending on the tunable graphitization level of GNL. The resulting ultrafine (≈0.7 nm) amorphous‐ruthenium nanoclusters linked with GNL (a‐Ru@GNL500) exhibit state‐of‐the‐art performance in the hydrogen evolution reaction (HER), requiring very low overpotentials of only 23.0 and 285.0 mV to achieve current densities of 10  and 500 mA cm−2, respectively. Furthermore, a‐Ru@GNL500 demonstrates exceptional operational stability for 100 h under high HER currents of 200 and 400 mA cm−2. Density functional theory reveals that the unique electronic structure of a‐Ru and the cooperative effect of cobalt embedded in the graphitic layer lower the occupancy of the antibonding orbital, resulting in an accelerated HER process. Additionally, the unique electronic structure, highly conducting GNL, and efficient bubble release dynamics of super‐aerophobic a‐Ru@GNL500 contribute to reduced overpotentials, particularly at high HER current densities.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3