Evolution of Self‐Assembled Lignin Nanostructure into Dendritic Fiber in Aqueous Biphasic Photocurable Resin for DLP‐Printing

Author:

Wang Luyao1,Wu Ruijie1,Wang Qingbo1,Backman Oskar1,Eklund Patrik2,Wang Xiaoju13,Xu Chunlin1ORCID

Affiliation:

1. Laboratory of Natural Materials Technology Åbo Akademi University Henrikinkatu 2 Turku FI‐20500 Finland

2. Organic Chemistry Laboratory of Molecular Science and Engineering Åbo Akademi University Henrikinkatu 2 Turku FI‐20500 Finland

3. Pharmaceutical Sciences Laboratory Åbo Akademi University Tykistökatu 6A Turku FI‐20520 Finland

Abstract

AbstractThe design of lignin nanostructures where interfacial interactions enable enhanced entanglement of colloidal networks can broaden their applications in hydrogel‐based materials and light‐based 3D printing. Herein, an approach for fabricating surface‐active dendritic colloidal microparticles (DCMs) characterized by fibrous structures using nanostructured allylated lignin is proposed for the development of lignin‐based photocurable resins. With allyl‐terminated surface functionality of 0.61 mmol g−1, the entanglement between lignin‐DCM fibrils with a size of 1.4 µm successfully produces only lignin‐based hydrogels with structural integrity through photo‐crosslinking. The colloidal network of lignin dendricolloids reinforces the poly(ethylene glycol) (PEG) hydrogels during a digital light processing (DLP) 3D printing process by generating bicontinuous morphologies, resulting in six‐fold increases in toughness values with respect to the neat PEG hydrogel. The dual effectiveness of photoabsorption and free‐radical reactivity of lignin‐DCMs allow the light‐patterning of rather dilute PEG hydrogels (5–10%) with high geometric fidelity and structural complexity via DLP 3D printing. This study demonstrates a green and effective strategy for the design of 1D lignin‐DCMs that increases the versatility of the nanostructured biopolymer, opening up numerous opportunities for formulating functional hydrogels with robust structure‐property correlations.

Funder

Academy of Finland

Business Finland

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3