Affiliation:
1. Guangzhou Key Laboratory of Low‐Dimensional Materials and Energy Storage Devices Collaborative Innovation Center of Advanced Energy Materials School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
2. School of Chemical Engineering and Technology Guangdong Industry Polytechnic Guangzhou 510300 China
Abstract
AbstractLithium metal has been recognized as the most promising anode material due to its high capacity and low electrode potential. However, the high reactivity, infinite volume variation, and uncontrolled dendrites growth of Li during long‐term cycling severely limit its practical applications. To address these issues, herein, a novel 3D Al/Mg/Li alloy (denoted as AM‐Li) anode is designed and constructed by a facile smelting‐rolling strategy, which improves the surface stability, electrochemical cycling stability, and rate capability in lithium metal batteries. Specifically, the optimized AM‐Li|AM‐Li symmetric cell exhibits low polarization voltage (< 20 mV) and perfect cycling stability at 1 mA cm−2‐1 mAh cm−2 for more than 1600 h. Moreover, the AM‐Li|NCM811 full cell exhibits superior rate capability up to 5 C and excellent cyclability for 100 cycles at 0.5 C with a high capacity retention of 90.8%. The realization of lithium‐poor or lithium‐free anode materials will be a major development trend of anode materials in the future. Therefore, the research shows that the construction of 3D alloy framework is beneficial to improve the cycling stability of Li anodes by suppressing the volume expansion effect and Li dendrite growth, which will promote the further development of lithium‐poor metal anodes.
Funder
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献