Affiliation:
1. National Key Laboratory of Advanced Micro and Nano Manufacture Technology Shanghai Jiao Tong University Shanghai 200240 P. R. China
2. DCI Joint Team Collaborative Innovation Center of IFSA Department of Micro/Nano Electronics Shanghai Jiao Tong University Shanghai 200240 P. R. China
3. Shanghai Chest Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200030 P. R. China
Abstract
AbstractPulsed field ablation is a novel approach to treating 33.5 million patients with atrial fibrillation and offers a tissue‐specific advantage over conventional radiofrequency ablation and cryoablation. However, for complex structural targets in the heart, current electrodes often damage non‐target areas due to inaccurate ablation and have to employ electrical pulses with amplitudes of several kilovolts. Herein, materials and designs of a catheter‐integrated microelectrode and sensors that can be used for high‐precision and low‐voltage pulsed field ablation through minimally invasive operation on a large animal model, is reported. The device with a new electrode configuration supports point‐by‐point ablation with a width of 3.8 mm (≈1/10 that of a typical ablation electrode) for individual lesions at the voltage of 300 V (an order of magnitude reduction compared to the current state‐of‐the‐art). More impressively, the integrated catheter allows for pulsed field ablation on the large animal heart through minimally invasive surgery and blocks the electrical conduction pathway on the heart, which is the key to treating atrial fibrillation. This catheter‐integrated device will enhance the efficiency and safety of pulsed field ablation, especially for complex cardiac structures, thus facilitating its move to the clinic.
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献