Cu7S4/MxSy (M=Cd, Ni, and Mn) Janus Atomic Junctions for Plasmonic Energy Upconversion Boosted Multi‐Functional Photocatalysis

Author:

Guo Meijun1,Talebian‐Kiakalaieh Amin1,Xia Bingquan1,Hu Yiyang2,Chen Hongjun3,Ran Jingrun1,Qiao Shi‐Zhang1ORCID

Affiliation:

1. School of Chemical Engineering The University of Adelaide Adelaide SA 5005 Australia

2. College of Energy Xiamen University Xiamen 361005 P. R. China

3. School of Physics Faculty of Science The University of Sydney Sydney NSW 2006 Australia

Abstract

AbstractRational design/synthesis of atomic‐level‐engineered Janus junctions for sunlight‐impelled high‐performance photocatalytic generation of clean fuels (e.g., H2O2 and H2) and valuable chemicals are of great significance. Especially, it is appealing but challenging to acquire accurately‐engineered Janus atomic junctions (JAJs) for simultaneously realizing the plasmonic energy upconversion with near‐infrared (NIR) light and direct Z‐scheme charge transfer with visible light. Here, a range of new Cu7S4/MxSy (M=Cd, Ni, and Mn) JAJs are designed/synthesized via a cation‐exchange route using Cu7S4 hexagonal nanodisks as templates. All Cu7S4/MxSy JAJs show apparently‐enhanced photocatalytic H2O2 evolution compared to Cu7S4 in pure water. Notably, optimized Cu7S4/CdS (CCS) JAJ exhibits the outstanding H2O2 evolution rate (2.93 mmol g−1 h−1) in benzyl alcohol aqueous solution, due to the following factors: i) NIR light‐impelled plasmonic energy upconversion induced H2O2 evolution, revealed by ultrafast transient absorption spectroscopy; ii) visible‐light‐driven direct Z‐scheme charge migration, confirmed by in situ X‐ray photoelectron spectroscopy. Besides, three different reaction pathways for H2O2 evolution are disclosed by in situ electron spin resonance spectroscopy and quenching experiments. Finally, CCS JAJ also exhibits super‐high rates on H2 and benzaldehyde co‐generation using visible‐NIR light or NIR light. This work highlights the significance of atomic‐scale interface engineering for solar‐to‐chemical conversion.

Funder

Australian Research Council

Australian Synchrotron

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3