Affiliation:
1. School of Materials Science and Engineering Tongji University Shanghai 201804 P. R. China
2. Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation Translational Research Institute of Brain and Brain‐Like Intelligence Shanghai Fourth People's Hospital Affiliated to Tongji University Tongji University Shanghai 200434 P. R. China
Abstract
AbstractAchieving convenient, sensitive, low‐cost, and non‐contact detection of trace addictive drugs is a challenging problem. Herein, a novel ionically conductive metal‐organic framework (IC‐MOFs) is designed through a controlled interface assembly strategy. The active metal anions are incorporated into the layered MOFs with a porous structure, forming charge carriers that served as effective adsorption/binding sites for N‐methylphenethylamine (MPEA), a crucial simulator of addictive drugs. The in situ integrated Zn3(HHTP)2‐MOF sensor device designed in this study demonstrated real‐time detection of sub‐ppb level MPEA at room temperature, with an exceptionally low theoretical detection limit of 20 ppt. The overall sensing performance of this sensor surpassed all previously reported chemical sensors for detecting methamphetamine. The Zn3(HHTP)2‐MOF sensor exhibited outstanding selectivity, rapid response time (ca. 5 s), excellent long‐term stability, amenable miniaturization, and device consistency. The device successfully passed dual 85 test (500 h at 85 °C and 85% of humidity), which is rarely report previously. Density functional theoretical calculations (DFT) and spectral characterization confirmed that the prominent selectivity of Zn3(HHTP)2‐MOF toward MPEA is attributed to the strong binding ability. The general and straightforward strategy provides brand‐new route to exploiting smart sensors for drug prevention and surveillance.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献