Affiliation:
1. School of Physics State Key Laboratory of Crystal Materials Shandong University Jinan Shandong 250100 P. R. China
2. School of Physics National Demonstration Center for Experimental Physics Education Shandong University Jinan Shandong 250100 P. R. China
3. ARC Centre of Excellence in Exciton Science School of Chemistry The University of Melbourne Parkville Victoria 3010 Australia
Abstract
AbstractRecent advances in organic photodetectors (OPDs) have enabled high detectivity, high quantum efficiency, and fast response, due to their broad spectral response, easy processing, compatibility with flexible devices, and cooling‐free operations. The advantages of combining ultrathin and self‐powered OPDs are rarely explored, as technological limitations and lack of knowledge on the underlying mechanisms may lead to low light absorption efficiency and carrier recombination issues. Here, a modification layer‐assisted approach is developed to construct ultrathin self‐powered OPDs with enhanced sensitivity and ultrafast response time performance due to efficient exciton dissociation, energy transfer, and charge extraction processes. Specifically, this strategy enables a reduced exciton binding energy (42.4 meV) for efficient dissociation, as well as an increased dielectric constant of the photosensitive layer that shields undesirable lattice binding effects of photogenerated excitons. As a result, a remarkable device responsivity (0.45 A W−1), improved response detectivity (1.25 × 1012 Jones), and enhanced energy transfer efficiency (78.7%) are observed in the modified ultrathin organic photodetector. These findings illustrate a clear correlation between the exciton dissociation process, photogenerated exciton yields, and energy transfer channels, providing essential insight into the design of efficient ultrathin organic photodetectors.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Centre of Excellence in Exciton Science
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献