Efficient Ultrathin Self‐Powered Organic Photodetector with Reduced Exciton Binding Energy and Auxiliary Föster Resonance Energy Transfer Processes

Author:

Qiao Jia‐Wei1,Cui Feng‐Zhe1,Feng Lin1,Lu Peng2,Yin Hang1,Hao Xiao‐Tao13ORCID

Affiliation:

1. School of Physics State Key Laboratory of Crystal Materials Shandong University Jinan Shandong 250100 P. R. China

2. School of Physics National Demonstration Center for Experimental Physics Education Shandong University Jinan Shandong 250100 P. R. China

3. ARC Centre of Excellence in Exciton Science School of Chemistry The University of Melbourne Parkville Victoria 3010 Australia

Abstract

AbstractRecent advances in organic photodetectors (OPDs) have enabled high detectivity, high quantum efficiency, and fast response, due to their broad spectral response, easy processing, compatibility with flexible devices, and cooling‐free operations. The advantages of combining ultrathin and self‐powered OPDs are rarely explored, as technological limitations and lack of knowledge on the underlying mechanisms may lead to low light absorption efficiency and carrier recombination issues. Here, a modification layer‐assisted approach is developed to construct ultrathin self‐powered OPDs with enhanced sensitivity and ultrafast response time performance due to efficient exciton dissociation, energy transfer, and charge extraction processes. Specifically, this strategy enables a reduced exciton binding energy (42.4 meV) for efficient dissociation, as well as an increased dielectric constant of the photosensitive layer that shields undesirable lattice binding effects of photogenerated excitons. As a result, a remarkable device responsivity (0.45 A W−1), improved response detectivity (1.25 × 1012 Jones), and enhanced energy transfer efficiency (78.7%) are observed in the modified ultrathin organic photodetector. These findings illustrate a clear correlation between the exciton dissociation process, photogenerated exciton yields, and energy transfer channels, providing essential insight into the design of efficient ultrathin organic photodetectors.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Centre of Excellence in Exciton Science

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3