Covalent–Organic‐Framework Membrane with Aligned Dipole Moieties for Biomimetic Regulable Ion Transport

Author:

Lai Zhuozhi1,Ai Yuqing2,Xian Weipeng1,Guo Qing1,Meng Qing‐Wei1,Yin Shijie2,Wang Sai1,Zhang Li2,Xiong Yubing2,Chen Banglin34,Sun Qi1ORCID

Affiliation:

1. Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China

2. Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China

3. Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Materials Science Zhejiang Normal University Jinhua 321004 China

4. Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry & Materials Science Fujian Normal University Fuzhou 350007 China

Abstract

AbstractBiological ion channels are renowned for their exceptional ion transport selectivity and adaptability to environmental changes, posing a significant challenge for synthetic mimicry. Herein, an innovative covalent–organic‐framework membrane featuring aligned benzothiadiazole units within its oriented 1D nanochannels is reported. These densely arrayed dipolar benzothiadiazole units enhance selective ion adsorption and facilitate membrane charge regulation. Consequently, the membrane can dynamically adjust its permselectivity toward ions, transitioning seamlessly between cation‐selective, ambipolar, and anion‐selective states. This versatility affects both the type of ions transported and the transport efficiency, supporting reversible and controlled membrane operation, as illustrated by the capacity to regulate the magnitude and direction of osmotic power. When interacting with multivalent anions, highly negatively charged channels of the membrane exhibit outstanding cation permselectivity and conductivity. Specifically, upon exposure to PO43− ions, the membrane achieves a remarkable osmotic power of 155 W m−2 and an energy conversion efficiency of 46.1% under salinity gradients of 0.5 and 0.01 m NaCl. Notably, introducing multivalent cations can reverse the polarity of the membrane. This work underscores the potential of exploiting ion‐dipolar interactions for the development of adaptive, ion‐selective membranes with promising applications in electrochemical sensing, energy conversion, and more.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3