Active‐Textile Yarns and Embroidery Enabled by Wet‐Spun Liquid Crystalline Elastomer Filaments

Author:

Martinez Antonio Proctor1ORCID,Ng Alicia1ORCID,Nah So Hee1ORCID,Yang Shu1ORCID

Affiliation:

1. Department of Materials Science and Engineering University of Pennsylvania 3231 Walnut Street Philadelphia PA 19104 USA

Abstract

AbstractLiquid crystal elastomers (LCEs) are promising candidates for creating adaptive textile‐based devices that can actively and reversibly respond to the environment for sensing and communication. Despite recent advances in scalable manufacturing of LCE filaments for textile engineering, the actuation modes of various LCE filaments focus on contractual deformations. In this study, manufacture of polydomain LCE filaments with potential scalability by wet‐spinning is studied, followed by mechanical exploitation to program liquid crystal mesogen alignments, demonstrating both contractual and twisting actuation profiles. By plying these LCE filaments into yarns with different twist concentrations, yarn actuation, and mechanical performance is tuned. Yarns plied at 4 twists per cm can generate up to a seven‐fold increase in elastic modulus while maintaining 90% of actuation strain performance from their native filament. The contractual and twisting LCE filaments are then embroidered with varying stitch types to spatially program complex 2D‐to‐3D transformations in “inactive” fabrics. It is shown that a running stitch can actuate up to 15% in strain and create angular displacements in fabric with twisted mesogen alignments. It is envisioned that the wet‐spun polydomain LCE filaments for diverse plied yarn production together with textile engineering will open new opportunities to design smart textiles and soft robotics.

Funder

National Science Foundation

University of Pennsylvania

Army Research Office

National GEM Consortium

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3