Freely Tailorable Yolk‐Shell Encapsulation: Versatile Applications in Ultralow‐k Dielectric, Drug Delivery Systems, and Catalysts

Author:

Zhang Zhe1,He Peng1,Ma Wenjun1,Zuo Peiyuan1,Liu Xiaoyun1,Zhuang Qixin1ORCID

Affiliation:

1. Key Laboratory of Advanced Polymer Materials of Shanghai School of Material Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China

Abstract

AbstractHerein, a facile, controllable, and versatile method is reported to prepare monodisperse yolk‐shell and yolk‐multishell silica nanoparticles (NPs) with mesoporous shells by a novel selective etching strategy. The mechanism of selective etching based on fluoride‐silica chemistry is investigated in detail and thus provides a fundamentally novel principle for the fabrication of yolk‐shell NPs. Specifically, this unprecedented and versatile synthesis strategy can be used to encapsulate essentially any silica‐based, carbon‐based, metal, metal oxide, or other possible NPs. Noteworthy is that most of the yolk‐shell mesoporous silica (mSiO2) NPs are prepared for the first time. To demonstrate the major structural and compositional advantages of the designed yolk‐shell NPs, their applications in the fields of ultralow‐dielectric constant (k) materials, drug delivery systems, and catalysts were explored. In detail, the lowest k value of the prepared yolk‐shellordered mesoporous silica@mSiO2/fluorinated polybenzoxazole composite films is 2.02; The obtained yolk‐shell mSiO2/C@mSiO2/C NPs possess high hydrophilicity and pH‐responsive sensitivity; The conversion of the catalytic reaction of the designed magnetic yolk‐shell hollow Fe3O4@SiO2/Au@mSiO2 NPs at 20 min is 97% with a high conversion rate (92%) and recyclability even after 10 reuses. This innovative work lays a solid foundation for freely tailorable yolk‐shell encapsulation and will greatly stimulate more efforts devoted to relevant research and development.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3