Calibration‐Free and High‐Sensitivity Microwave Detectors Based on InAs/InP Nanowire Double Quantum Dots

Author:

Cornia Samuele12ORCID,Demontis Valeria34ORCID,Zannier Valentina34ORCID,Sorba Lucia35ORCID,Ghirri Alberto5ORCID,Rossella Francesco4ORCID,Affronte Marco45ORCID

Affiliation:

1. Dipartimento di Scienze Fisiche Informatiche e Matematiche Università di Modena e Reggio Emilia via G. Campi 213/A 41125 Modena Italy

2. Dipartimento di Fisica Università di Pavia via A. Bassi 6 27100 Pavia Italy

3. Istituto Nanoscienze Consiglio Nazionale delle Ricerche Piazza San Silvestro 12 56127 Pisa Italy

4. NEST Scuola Normale Superiore Piazza San Silvestro 12 56127 Pisa Italy

5. Istituto Nanoscienze Consiglio Nazionale delle Ricerche via G. Campi 213/A 41125 Modena Italy

Abstract

AbstractAt the cutting‐edge of microwave detection technology, novel approaches which exploit the interaction between microwaves and quantum devices are rising. In this study, microwaves are efficiently detected exploiting the unique transport features of InAs/InP nanowire double quantum dot‐based devices, suitably configured to allow the precise and calibration‐free measurement of the local field. Prototypical nanoscale detectors are operated both at zero and finite source‐drain bias, addressing and rationalizing the microwave impact on the charge stability diagram. The detector performance is addressed by measuring its responsivity, quantum efficiency and noise equivalent power that, upon impedance matching optimization, are estimated to reach values up to ≈2000 A W−1, 0.04 and ≈, respectively. The interaction mechanism between the microwave field and the quantum confined energy levels of the double quantum dots is unveiled and it is shown that these semiconductor nanostructures allow the direct assessment of the local intensity of the microwave field without the need for any calibration tool. Thus, the reported nanoscale devices based on III‐V nanowire heterostructures represent a novel class of calibration‐free and highly sensitive probes of microwave radiation, with nanometer‐scale spatial resolution, that may foster the development of novel high‐performance microwave circuitries.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3