Lattice Engineering toward Extraordinary Structural Stability of High‐Performance Single‐Crystal Li‐Rich Layered Oxides Cathodes

Author:

Gao Xianggang1,Wang Lei1,Guo Juanlang1,Li Shihao1,Zhang Haiyan12,Chen Long1,Zhang Yi1,Lai Yanqing1,Zhang Zhian1ORCID

Affiliation:

1. School of Metallurgy and Environment Hunan Province Key Laboratory of Nonferrous Value‐Added Metallurgy Engineering Research Center of the Ministry of Education for Advanced Battery Materials Central South University Changsha Hunan 410083 P. R. China

2. Hunan ChangYuan LiCo Co., Ltd. Changsha Hunan 410205 P. R. China

Abstract

AbstractPrevailing Li‐rich layered oxide cathodes (LLOs) possessing with polycrystalline morphology suffer from unsatisfactory cyclic stability due to serious structural failures including irreversible oxygen release, phase transformation, and microcrack, further limiting its commercial application for high‐energy‐density lithium‐ion batteries. Herein, single‐crystallization combining with a simple boric acid treatment strategy is applied to robust the stability of lattice structure for achieving the reversible oxygen anionic redox of LLOs. The obtained single‐crystal LLOs display less grain boundaries and excellent mechanical stability, contributing to suppress the accumulation of lattice strain and microcracks. Additionally, the induced surface Li2B4O7 with spinel phase coating and bulk gradient B doping after boric acid treatment significantly inhibit the irreversible oxygen release and enhance the stability of lattice structure. Besides, lattice structure regulation also boosts the Li+ diffusion kinetics due to the existence of oxygen defects, fast Li‐ion conductive coating, and enlarged Li+ layer spacing. As a result, the modified SC‐LLOs showcase superior cyclic stability with a capacity retention of 87.42% after 300 cycles at 1 C and excellent rate performance with a high capacity of 144.9 mAh g−1 at 5 C. This work provides some significant references to strengthen the structural stability of single‐crystal LLOs with long‐term cyclic capability via lattice engineering.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3