In Situ Construction of a Lithiophilic and Electronically Insulating Multifunctional Hybrid Layer Based on the Principle of Hydrolysis for a Stable Garnet/Li Interface

Author:

Wang Lingchen12,Lu Yan12,Zheng Chujun12,Cai Mingli12,Xu Fangfang12ORCID,Wen Zhaoyin12ORCID

Affiliation:

1. The State Key Lab of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Science Shanghai 200050 P. R. China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractAdapting solid‐state Li‐metal batteries is an attractive way to pursue higher energy density and safety compared to liquid‐based ones. With high ionic conductivity and excellent stability with Li, Ta‐doped Li7La3Zr2O12 (LLZTO) is an effective option. However, the poor solid–solid interface contact induced by the lithiophobic Li2CO3 layer hinder its practical application. Herein, a versatile strategy is proposed based on the hydrolysis of sodium tetrafluoroborate (NaBF4), aiming to convert the Li2CO3 into multifunctional hybrid layer containing LiF, LiBO2, and NaF. Among them, LiF and LiBO2 serve as the primary Li ion conductors, the introduction of NaF with high surface energy not only enhances the interface wettability, but also further elevates the critical dendrite strength against Li dendrites. All three components serve as excellent electronic insulators, suppressing electron invasion at the interface and preventing Li dendrite growth in the solid electrolyte. As expected, the interfacial impedance of the NaBF4 treated symmetric cell is reduced to 6.0 Ω cm2, the critical current density (CCD) comes to 2.0 mA cm−2, and cycles over 3000 h at 0.3 mA cm−2 and 1500 h at 0.5 mA cm−2 respectively. Besides, the modified SSBs matched with LiFePO4 or LiNi0.6Co0.2Mn0.2O2 cathode show great long‐term cycling and rate performance.

Funder

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3