Hydrophobic Hyamine‐Mediated Water‐Lean Electric Double Layer Boosting Reversible Dendrite‐Free Zinc Metal Anodes

Author:

Cai Shan1,Hu Jiugang1ORCID,Luo Yuqing1,Zhu Pengfei1,He Ting1,Zou Guoqiang1,Hou Hongshuai1,Ji Xiaobo1

Affiliation:

1. College of Chemistry and Chemical Engineering Central South University Changsha 410083 China

Abstract

AbstractAqueous zinc‐ion batteries (ZIBs) are promising candidates for grid‐energy storage due to their safety and cost‐effectiveness. However, the detrimental hydrogen evolution reaction (HER) and dendrite growth on Zn‐metal anodes severely limit their applications. Herein, trace hydrophobic hyamine (HQA, 0.78 mmol L−1) is introduced as an electrolyte additive to improve the electrochemical performance of the Zn anode. Experiments and theoretical calculations revealed that cationic HQA can preferentially adsorb onto the anode surface to inhibit the HER and promote the uniform distribution of Zn ions by forming a water‐lean electric double layer (EDL). Moreover, the oriented adsorption of HQA induced exposure of the Zn (002) plane and prevented dendrite growth. Therefore, the symmetric cells using the HQA‐containing electrolyte exhibited stable cycle performance for more than 1600 h. Even at a high‐density current of 5 mA cm−2, it has a high cumulative capacity of 3250 mAh cm−2. It exhibited an excellent deep‐discharge performance (80%) with a stable cycle for 175 h. The Zn||NH4V4O10 full cell exhibited a high specific capacity and cycle stability at 4.0 A g−1 due to the excellent reversibility of Zn anode. These results provide a new and low‐cost approach for electrolyte design and EDL optimization of high‐performance zinc‐ion batteries.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3