Affiliation:
1. School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China Soochow University Suzhou 215006 P. R. China
2. Department of Materials Science and Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong 999077 P. R. China
Abstract
AbstractPerovskite‐based single‐junction and tandem solar cells have recently attracted considerable attention due to their remarkable advantages in power conversion efficiency (PCE) and fabrication cost; however, their commercialization remains challenging. One crucial limiting factor is the incompetent thermal management, which is inclined to degrade the PCE and stability of the device. Here, a rigorous opto–electro–thermal (OET) simulation is performed to disclose the internal energy conversion and heat mechanisms within devices. Taking a low‐bandgap PSC as an example, the microscopic energy conversion processes concerning the contributions from thermalization, Joule, Peltier, and bulk/interface recombination heats are quantitatively identified. Then various thermal manipulation strategies are proposed, including external (cooling effect) and internal (transport layer materials, photoluminescence colorants, and tandem strategy) methods with the purposes of reducing the heat generation and device temperature. Through the joint OET optimization, the predicted temperature of the considered single‐junction (tandem) PSC is reduced to 44.3 °C (33.5 °C) with the possible PCE up to 22.35% (29.08%). Based on the simulation, a tandem PSC (under two‐terminal configuration) is fabricated and a PCE of 25.03% is realized. This study offers an effective approach for energy analysis and manipulation to realize higher‐performance PSCs with lower operation temperatures.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献