Reversible Room Temperature Brittle‐Plastic Transition in Ag2Te0.6S0.4 Inorganic Thermoelectric Semiconductor

Author:

Wang Yuechu1ORCID,Li Airan1ORCID,Hu Huiping1ORCID,Fu Chenguang1ORCID,Zhu Tiejun1ORCID

Affiliation:

1. State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310058 China

Abstract

AbstractInorganic semiconductors with superior plasticity are highly desired in current flexible electronics, which however are rarely discovered owing to their intrinsic covalent and ionic bonds. The Ag2Te0.6S0.4 semiconductor with an amorphous phase has recently been reported to exhibit plastic deformability. In this study, the reversible brittle‐plastic transition is found in this inorganic semiconductor, and the plasticity of the Ag2Te0.6S0.4 sample is highly related to the phase structures. The Ag2Te0.6S0.4 with a monoclinic phase exhibits a brittle behavior, while the one with cubic‐crystalline/amorphous structure shows exceptional plasticity with a compressive strain of over 80%. Significantly, the reversible plastic‐brittle transition in Ag2Te0.6S0.4 inorganic semiconductor can be achieved by simple heat treatment. Besides the plasticity, the cubic‐crystalline/amorphous Ag2Te0.6S0.4 composites also possess good thermoelectric performance. This study uncovers the influence of phase structure on the mechanical properties of Ag2Te0.6S0.4 and realizes the reversible brittle‐plastic transition, facilitating its prospective application in flexible/wearable electronics.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3