Biomimetic Silk Fibroin Hydrogel for Enhanced Peripheral Nerve Regeneration: Synergistic Effects of Graphene Oxide and Fibroblast Exosome

Author:

Gao Yisheng1ORCID,Dai Chaolun2,Zhang Miao1,Zhang Jianye1,Yin Long1,Li Wanhua1,Zhang Kunyu34,Yang Yumin1ORCID,Zhao Yahong1ORCID

Affiliation:

1. Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education Co‐innovation Center of Neuroregeneration NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products Nantong University Nantong 226001 P. R. China

2. Medical School Nantong University Nantong 226001 P. R. China

3. School of Biomedical Sciences and Engineering Guangzhou International Campus South China University of Technology Guangzhou 511442 P. R. China

4. National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China

Abstract

AbstractPeripheral nerve injury represents a critical clinical challenge. Employing tissue engineering, biomimetic scaffolds mimicking the biophysical and biochemical cues of the native extracellular matrix have shown promise. Specifically, conductive matrices, mirroring neural tissue's electrical properties, hold potential for neural tissue repair. However, the synergistic impact of conductivity and biomolecules on injured peripheral nerves remains unexplored. In this study, conductive hydrogels via a three‐step click chemical reaction method, incorporating silk fibroin, graphene oxide, and Polyethylene Glycol Diacrylate is crafted. The inclusion of fibroblast exosomes yielded a synergistic effect, enhancing recovery from peripheral nerve injuries. Graphene oxide heightened the electron transmission capacity of the hydrogels, while fibroblast exosomes endowed them with the ability to modulate cellular behaviors. This resulted in enhanced axon and myelin regeneration. Furthermore, the hydrogel facilitated vascular regeneration during peripheral nerve recovery through the VEGF/NOTCH signaling pathway. Transplanting conductive hydrogel conduits laden with fibroblast exosomes led to substantial functional recovery in a rat sciatic nerve transection model. Consequently, a novel strategy to expedite the intricate repair of peripheral nerve injuries is proposed.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3